Finger Vein Recognition by Combining Global and Local Features based on SVM
نویسنده
چکیده
Recently, biometrics such as fingerprints, faces and irises recognition have been widely used in many applications including door access control, personal authentication for computers, internet banking, automatic teller machines and border-crossing controls. Finger vein recognition uses the unique patterns of finger veins to identify individuals at a high level of accuracy. This paper proposes new algorithms for finger vein recognition. This research presents the following three advantages and contributions compared to previous works. First, we extracted local information of the finger veins based on a LBP (Local Binary Pattern) without segmenting accurate finger vein regions. Second, the global information of the finger veins based on Wavelet transform was extracted. Third, two score values by the LBP and Wavelet transform were combined by the SVM (Support Vector Machine). As experimental results, the EER (Equal Error Rate) was 0.011% and the total processing time was 98.2ms.
منابع مشابه
Object Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملLocal Vein Texton Learning for Finger Vein Recognition
In finger vein recognition, the input image is generally labeled in accordance with the nearest enrolled neighbor. However, it is so rigid that it is inadequate for some cases. This paper explores a modified sparse representation method for finger vein recognition. In the method, each block in a finger vein image will be sparsely represented by dictionary textons, not simply labeled by the near...
متن کاملFinger-Vein Verification Based on Multi-Features Fusion
This paper presents a new scheme to improve the performance of finger-vein identification systems. Firstly, a vein pattern extraction method to extract the finger-vein shape and orientation features is proposed. Secondly, to accommodate the potential local and global variations at the same time, a region-based matching scheme is investigated by employing the Scale Invariant Feature Transform (S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computing and Informatics
دوره 30 شماره
صفحات -
تاریخ انتشار 2011